Technical Report 1

Falls Church Tower

Falls Church, VA

Nathan Eck Structural Option Consultant: Dr. Memari October 22, 2010

Nathan Eck	Falls Church Tower
Technical Report 1	Falls Church, VA

Table of Contents

Executive Summary	2
Introduction	3
Structural Systems	-
Foundation System	4
Gravity System	6
Lateral System	7
Applicable Codes	8
Materials and Properties	9
Loads	_
Design	10
Wind	.11
Seismic	.15
Spot Checks	.18
Conclusion	20
Appendix	
A – Figures	.22
B – Building Weight	24
C – Snow Load	.29
D – Wind Load	30
E – Seismic Load	37
F – Spot Checks	39

Nathan Eck	Falls Church Tower
Technical Report 1	Falls Church, VA

Executive Summary

The structural concepts and existing conditions report describes the structural system of the Falls Church Tower luxury apartment building. The structure is located in Falls Church, Virginia and utilizes spread footings under both the concrete columns and retaining walls. The floor systems of the building are comprised of 5 inch slab on grade, 7 inch post-tensioned slabs, and 9 inch slabs supported by concrete beams. In addition to the floor systems the building contains concrete columns in a variety of sizes arranged in alternating directions so as to support both gravity loads and lateral loads.

The gravity loads and lateral loads of Falls Church Tower were calculated using ASCE 7-05 and compared to the loads provided by the structural engineers. The controlling lateral load proved to be the seismic base shear (V=1933 K) which was significantly greater the the wind base shear of 951.93 K.

Spot checks were done on column 120, which runs from the level 2 floor slab to the level 11 floor slab with a consistent tributary area throughout the height of the structure. The results from these spot checks verified the design loads used by the designing engineer and the design loads used throughout the technical report. However, it must be kept in mind that neither live load reductions nor lateral forces where included in these spot checks in order to simplify the calculations.

Nathan Eck	Falls Church Tower
Technical Report 1	Falls Church, VA

Introduction

The Falls Church Tower is a luxury apartment building located in Falls Church, Virginia. The high rise apartment building stand eleven stories tall with penthouse on the main roof. Three and a half levels of parking are offered beneath the building and private pool sits adjacent to the plaza. The building encloses 364,000 square feet of gross floor area which excludes mechanical rooms, underground rooms, and garage space. The first floor contains the lobby, a residential gym, and a lounge as well as some living space with the remaining floors serving as strictly residential space. Overall the building contains 213 residential units with a wide view of the surrounding area courtesy of the building's curved facade. The structural system of the building is primarily concrete consisting of retaining walls, columns, post-tensioned slabs, and beams. The lateral system is composed of the aforementioned columns and slabs which form and ordinary concrete moment frame.

Nathan Eck	Falls Church Tower
Technical Report 1	Falls Church, VA

Foundation

The foundation system of Falls Church Tower was designed in accordance with the geotechnical report provided by Whitlock, Dairymple, Poston and Associates. The report indicated a soil bearing pressure of 4 ksf along the southern face of the tower and a bearing pressure of 10 ksf for the remainder of the structure.

The foundation system from levels B3 Ext. through B1 consist of retaining walls, spread footings, and a precast slab on grade. The retaining wall runs the full perimeter of the building with a thickness of 1'-4" on the B3 Ext. level and 1'-0" for B3 through B1. The footings under the retaining walls have a width ranging from 2' to 3'. The 2' width is used for sections of the buildings where the B1 retaining wall is offset towards the interior of the building by 3'-6". A section of a typical retaining wall can be seen in Figure 1-2 and Figure 1-3.

The column footings have a range of 6'x6' to 12'x12' throughout the structure. The larger footings (10'x10' to 12'x12') being located in the basement parking section beneath the plaza. A typical footing detail can be seen in Figure 1-1. The slab on grade is 5 ksi, normal weight concrete that is 5" thick with 6x6-W2.0xW2.0 welded wire fabric placed on a vapor barrier on top of 6" of #57 washed crushed stone

Figure 1-1

Nathan Eck Technical Report 1

Nathan Eck	Falls Church Tower
Technical Report 1	Falls Church, VA

Gravity Load System

The main gravity load resisting system is composed of a flat plate supported by an intricate array of columns. Levels B3 Ext. through B1 plate systems are typically a 5 ksi, 9" thick, normal weight slab with a two way mat of #4 bottom bars at 12" on center except for slabs on grade which are 5 kis, 5" thick normal weight concrete. The penthouse roof and the elevator machine room roof use a 6" thick, one-way slab with the same properties and is support by a system of concrete beams. The plate systems from level 1 through the main roof utilize a 7" thick post tensioned slab. The typical tendons are two to three strands thick and spaced 5' on center. For a typical post tension layout plan refer to Figure 1-4.

The tower columns don't necessarily have a standard bay size due to the building's curved shape and the stair cases in both the east and west wings which interrupt any attempt at a rectilinear layout. The most typical bay size established throughout the building would be the 28'x24' bays located in the western half of the building's curved section. A standard column layout can be seen in Figure 1-5

In addition to the flat plate system the structural engineers also incorporated concrete beams into the design where necessary. As previously mentioned a system of beams is used to support the penthouse and mechanical room roofs. There are also strap (grade) beams used in the west section of B3 Ext. foundation and the east edge of B3 foundation which can be seen in Figure 1-6. Lastly, beams are used to frame all stairs and elevator shafts.

Figure 1-4 (for a larger view refer to Appendix A)

FOURTH FLOOR POST TENSION LAYOUT PLAN

Figure 1-5

Lateral Load System

The lateral system of the building is an ordinary concrete moment frame. The tower columns' dimensions range from 12" to 24" on the short face and 12" to 48" on the long face. The two most typical columns that occur throughout the building are 16"x32" and 12"x36". The 16"x32" dimension is common for most of the interior columns whereas the 12"x36" columns are used to frame the stairs and elevator shafts.

Applicable Codes

Codes Used for Original Design

- International Building Code 2000
- Arlington County Building Code
- American Concrete Institute (ACI 318 and ACI 301)
- American Society for Testing and Materials
- American Institute of Steel Construction Manual

Codes Substituted for Thesis Analysis

- American Society of Civil Engineers (ASCE 7-05)
- International Building Code 2006

Materials and Properties

Concrete

•	Footings	3000 psi
•	Retaining Wall Footings	5000 psi
•	Foundation Walls	
	• B3 and B3 Ext. Level	5000 psi
	• B2 and B1 Level	4000 psi
	 Site Retaining Wall 	5000 psi
•	Formed Slabs and Beams	5000 psi
•	Columns	5000, 6000, and 8000 psi
•	Slabs on Grade	5000 psi
•	Pea-Gravel Concrete	2500 psi
•	All Other Concrete	4000 psi
Doinf	orging Stool	
Kenno	orchig Steel	
•	Reinforcing Bars	ASTM A615
•	Welded Wire Fabric	ASTM A185
•	Reinforcing Bar Mats	ASTM A185
•	Reinforcing Bars in Garage Slabs	ASTM A775
Steel		
_	Mida Elanga Marshang	
•	where range members	AOTM A992
•	Stimener Plates	ASIM A572

Stiffener Plates ASTM A572
Other ASTM A36

Nathan Eck	Falls Church Tower
Technical Report 1	Falls Church, VA

Design Loads

All of the design loads for Falls Church Tower were calculated using the values and methods provided in sections three and four. These values can be found in tables 1-1 and 1-2 below and include live load and dead load values. Snow loads have been excluded from this section but can be found in Appendix C. Live load reductions were not taken into consideration for this design.

Live Load Areas	ASCE 7-05 Required Loading		Loads Used By Engineer
Private Rooms	40 psf	ASCE 7-05 Table 4-1	40 psf + 20 psf (Partition Allowance)
Public Rooms/Corridors	100 psf	ASCE 7-05 Table 4-1	100 psf
Tenant Storage	125 psf	ASCE 7-05 Table 4-1	125 psf
Roof	20 psf	ASCE 7-05 Table 4-1	30 psf
Stairways	100 psf	ASCE 7-05 Table 4-1	100 psf
Balconies	100psf	ASCE 7-05 Table 4-1	-
Theater	60 psf	ASCE 7-05 Table 4-1	-
Garage	40 psf	ASCE 7-05 Table 4-1	50 psf
Plaza	100 psf	ASCE 7-05 Table 4-1	350 psf
Mechanical	-		150 psf
Elevator Machine Room	_		125 psf

Table 1-2: Gravity Dead Loads

Dead Loads	Load Values
Floor Finish	16 psf
Slab: B3 - 1	109 psf
Slab: 2 - Main Roof	85 psf
MEP	15 psf
Steel	15 psf
Misc	10 psf
Roof Waterproofing	5.5 psf

Nathan Eck	Falls Church Tower
Technical Report 1	Falls Church, VA

Wind Loads

Wind loads for Falls Church Tower were calculated using the Analytical Procedure from ASCE 7-05. Variables used in the wind load calculations can be found below in Table 2-1. Calculations used to determine these values can be found in Appendix D.

Wind Variables						
Basic Wind Speed	V	90 mph				
Exposure	В	-				
Building Classification	Ш	-				
Importance Factor	I	1.00				
Directionality Factor	K _d	0.85				
Topographic Factor	K _{zt}	1.00				
Pressure Exposure Coefficient	K _z	Varies				
Pressure at Height z	q _z	Varies				
Pressure at Mean Roof Height	q _h	18.24 psf				
Gust Effect Factor	G _f	0.886				
External Pressure Coefficient (Windward)	C _{pw}	0.80				
External Pressure Coefficient (Leeward)	C _{pl}	-0.50				
Internal Pressure Coefficient	GC _{pi}	0.18				

Table 2-1: Wind Design Variables

While performing calculations to determine the gust effect factor and the leeward external pressure coefficient coefficients, it was found that each factor had the same value for the North-South and east-west directions. Given this information only one directional analysis was performed, that being in the North-South direction as these faces provide a larger surface area and therefore larger story forces which control design.

Nathan Eck	Falls Church Tower
Technical Report 1	Falls Church, VA

The final design wind pressures for the tower are provided in Table 2-2 and Figure 2-1 illustrates the distribution of these pressures across the face of the building. The shear forces produced by these pressures are provided in Table 2-3 and the distribution illustrated in Figure 2-2.

Design Wind Pressure P (psf)							
Floor	Height Above Ground (ft)	K	q _z (psf)	q _h (psf)	Windward (psf)	Leeward (psf)	Total Pressure (psf)
B1	0.000	0.570	10.05	18.24	10.41	-11.36	21.77
1.000	10.000	0.570	10.05	18.24	10.41	-11.36	21.77
2.000	21.000	0.628	11.07	18.24	11.13	-11.36	22.49
3.000	30.580	0.704	12.41	18.24	12.08	-11.36	23.44
4.000	40.170	0.761	13.41	18.24	12.79	-11.36	24.15
5.000	49.750	0.809	14.26	18.24	13.39	-11.36	24.75
6.000	59.330	0.847	14.93	18.24	13.87	-11.36	25.23
7.000	68.920	0.886	15.62	18.24	14.35	-11.36	25.72
8.000	78.500	0.924	16.29	18.24	14.83	-11.36	26.19
9.000	88.080	0.954	16.81	18.24	15.20	-11.36	26.56
10.000	97.670	0.983	17.33	18.24	15.57	-11.36	26.93
11.000	107.250	1.008	17.77	18.24	15.88	-11.36	27.24
Penthouse	118.830	1.035	18.24	18.24	16.21	-11.36	27.58

Table 2-2: Design Wind Pressures

Table 2-3: Story Shear Forces

Floor	Floor Height (ft)	Total Pressure (psf)	Story Force (K)	Story Shear (K)	Height Above Grade (ft)	Moment (ft-K)
B1	11.000	21.77	39.73	951.94	0.00	0
1.000	11.000	21.77	79.46	912.21	10.00	794.64
2.000	9.583	22.49	75.49	832.74	21.00	1585.3
3.000	9.583	23.44	73.03	757.25	30.58	2233.19
4.000	9.583	24.15	75.67	684.23	40.17	3039.55
5.000	9.583	24.75	77.75	608.56	49.75	3868.06
6.000	9.583	25.23	79.47	530.81	59.33	4714.78
7.000	9.583	25.72	81.01	451.34	68.92	5583.17
8.000	9.583	26.19	78.23	370.33	78.50	6140.84
9.000	9.583	26.56	79.5	292.1	88.08	7002.54
10.000	9.583	26.93	73.35	212.6	97.67	7163.62
11.000	10.583	27.24	75.12	139.26	107.25	8056.97
Main Roof	18.500	27.58	51.88	64.13	118.83	6165.39
Penthouse Roof	_	27.58	12.25	12.25	137.33	1681.68
		Base Shear =	951.93		Overturning Moment =	58029.73

Figure 2-1: Design Wind Pressures in the N-S Direction

Figure 2-2: Shear Story Forces in the N-S Direction

Nathan Eck	Falls Church Tower
Technical Report 1	Falls Church, VA

Seismic Loads

Seismic loads for Falls Church Tower were calculated in accordance with sections 11 and 12 of ASCE 7-05. The method used to determine the seismic loads was the Equivalent Lateral Force Procedure from section 12.8 Variables used in the seismic load calculations can be found below in Table 3-1. Calculations used to determine these values can be found in Appendix E.

Seismic Variables					
Soil Site Class	С	-			
Spectral Response Acceleration (Short)	S _s	0.16			
Spectral Response Acceleration (1s)	S ₁	0.05			
MCE Spectral Response Acceleration (Short)	S _{ms}	0.19			
MCE Spectral Response Acceleration (1s)	S _{m1}	0.09			
Design Spectral Acceleration (Short)	S _{DS}	0.13			
Design Spectral Acceleration (1s)	S _{D1}	0.06			
Fundamental Period	Т	1.34 s			
Long Period Transition Period	Τ _ι	8 s			
Building Period Coefficient	C _T	0.02			
Period Parameter	х	0.9			
Mean Roof Height	h _n	137.33 ft			
Seismic Response Coefficient	Cs	0.04			
Response Modification Coefficient	R	3			
Importance Factor	I	1			
Total Weight of Building Above Grade	W _T	45276 K			
Base Shear	V	1933 K			
Distribution Exponent	k	1.67			

Nathan Eck	Falls Church Tower
Technical Report 1	Falls Church, VA

Table 3-2 provides the calculated values for shear story force, base shear, story moments, and overturning moment. Figure 3-1 illustrates the distribution of the shear story fores. When comparing the base shear from seismic forces to the base shear from wind forces the seismic base shear was larger ad therefore controlled in the design of the structure.

Floor	Weight (K)	Height (f	w _x h ^k	C _{vx}	F _x (K)	Story Shear (K)	Moment(ft-K)
Penthouse Roof	362.52	137.33	1347101.20	0.03	53.73	-	7379.32
Mech. Roof	135.67	131.64	469744.36	0.01	18.74	-	2466.61
Main Roof	2123	118.83	6195503.07	0.13	247.13	72.47	29366.59
11	2791.08	107.25	6863344.16	0.14	273.77	319.60	29361.88
10	2917.01	97.67	6135346.59	0.13	244.73	593.37	23902.93
9	3747.92	88.08	6633388.19	0.14	264.60	838.10	23305.77
8	3772.08	78.50	5508244.65	0.11	219.72	1102.70	17247.80
7	4049.75	68.92	4758442.36	0.10	189.81	1322.42	13081.60
6	4055.06	59.33	3709927.70	0.08	147.98	1512.23	8779.92
5	4055.06	49.75	2764660.05	0.06	110.28	1660.21	5486.38
4	4055.06	40.17	1934253.29	0.04	77.16	1770.49	3099.32
3	4019.16	30.58	1215670.53	0.03	48.49	1847.65	1482.87
2	4216.18	21.00	680809.12	0.01	27.16	1896.14	570.29
1	5201.69	10.00	243301.32	0.01	9.70	1923.30	97.05
		Σw _i h _i ^k =	48459736.59	Base Shear :	= 1933	Overturning Mome	165628.33

Table 3-2: Seismic Loads

Figure 3-1: Story Shear Forces

Nathan Eck	Falls Church Tower
Technical Report 1	Falls Church, VA

Spot Checks

Spot checks of typical framing elements were performed in order to verify the loads used throughout this report in addition to the framing sizes by the structural engineers. These spot checks only took into account the gravity loads of the building which could lead to some variation in results seeing as the engineers also factored in lateral loads. For the purpose of this report spot checks were only done for a typical 16"x32" column of designation 120 that runs continuously from the 2nd level slab to the 11th level slab. A change in steel reinforcing occurs between level 2 and level 3 and was taken into account. For the time, punching shear and general loading spot checks for the post tension slabs have been forgone and will be addressed in Technical Report 2 as appropriate.

Figure 4-1 shows the location of the column in question Table 4-1 provides the calculation criteria and load values for the column. For more information regarding the spot check calculations refer to Appendix F.

Figure 4-1: Column 120 (highlighted)

Nathan Eck	Falls Church Tower
Technical Report 1	Falls Church, VA

Floor	Dead Load (psf	Live Load (psf	Total Load (psf	Required Strength (K) Design Strength (K
2	111.00	60.00	229.20	1486.49	1622.00
3	111.00	60.00	229.20	1321.80	1363.00
4	111.00	60.00	229.20	1156.28	1363.00
5	111.00	60.00	229.20	992.42	1363.00
6	111.00	60.00	229.20	827.74	1363.00
7	111.00	60.00	229.20	663.00	1363.00
8	111.00	60.00	229.20	498.36	1363.00
9	111.00	60.00	229.20	333.65	1363.00
10	136.50	49.25	242.00	168.98	1363.00

Table 4-1: Spot Check Values

Nathan Eck	Falls Church Tower
Technical Report 1	Falls Church, VA

Conclusion

The content of the first technical report was based on the exploration of the existing conditions of the building. The beginning of the report introduced key elements of the structural system through a description of the foundation, gravity load resisting systems, and lateral load resisting systems. Basic design loads were determined using ASCE 7-05 and the values provided in the structural drawing notes.

Weight of the building was the first criteria to be determined as it is integral in calculating seismic loads and performing spot checks. This was followed by wind load calculations and seismic load calculations, the base shears of which were compared to determine the controlling load, which was determined to be the seismic loads. These results are presented in the body of the report as well as the appendix.

Spot checks were performed on a typical 16"x32" column to verify both the size and reinforcement of the column as well as the design loads used for analysis. Both the columns and the design loads proved adequate for the purposes of the report. Slab spot checks such as punching shear and serviceability will be performed in later reports that deal more directly with those topics. The results for the spot checks can be found in designated section of the report and the supporting calculations can be found in the appendix.

Nathan Eck	
Technical Report	1

Appendix

<u> Appendix A – Figures</u>

Typical Post Tension Layout

<u> Appendix A – Figures</u>

Typical Column Layout

<u> Appendix B – Building Weight Tables</u>

	Total Weight (K)	93.63	50.67	91.66	255.79	365.77	419.02	419.02	500.74	500.74	500.74	500.74	526.95	604.87	631.47	751.71	764.72	615.07	286.48
	Total Volume (cf)	624.19	337.79	611.06	1705.29	2438.49	2793.44	2793.44	3338.24	3338.24	3338.24	3338.24	3513.03	4032.49	4209.81	5011.38	5098.14	4100.49	1909.89
	Column Area (sf)	33.74	39.74	57.74	177.95	254.46	291.5	291.5	348.35	348.35	348.35	348.35	366.59	366.59	382.71	556.82	566.46	455.61	212.21
	12x48 (4sf)				1	1	2	2	2	2	2	2	3	3	3	3	3		
	16x24 (2.67sf)					1	1	1											
	12x36 (3sf)	4	9	12	8	16	16	16	16	16	16	16	16	16	16	16	16	16	4
e and Number	12x18 (1.5sf)	5	5	5	80	8	8	8	8	8	8	8	8	8	14	12	9	3	
Column Size	12x12 (1sf)						1	1											
	24x32 (5.33sf)																5	9	4
	12x32 (2.67sf)				1	1	1	1	1	1	1	1	1	1	1	22	19	11	7
	16x32 (3.56 sf)	4	4	4	38	52	61	61	78	78	78	78	82	82	84	118	118	96	45
	Height(ft)	18.5	8.5	10.58	9.58	9.58	9.58	9.58	9.58	9.58	9.58	9.58	9.58	11	11	6	6	6	0
	Floor	Penthouse Roof	Elev. Mech. Room	Main Roof	11	10	6	80	7	9	5	4	8	2	1	81	B2	B3	B3 Ext.

Column Weights

Beam #	Size	Cum. Length (ft)	Volume (cf)	Weight K
TB01	12x16	20.00	26.60	3.99
TB02	12x16	20.00	26.60	3.99
TB03	12x16	20.00	26.60	3.99
TB04	12x16	10.00	13.30	2.00
TB05	12x16	20.00	26.60	3.99
TB06	12x16	20.00	26.60	3.99
TB07	12x16	20.00	26.60	3.99
TB08	12x16	10.00	13.30	2.00
TB09	12x16	40.00	53.20	7.98
TB10	12x16	22.00	29.26	4.39
TB11	12x16	20.00	26.60	3.99
	Total Weig	ght per Floor (1 - N	lain Roof)	44.29

<u>Appendix B – Building Weight Tables</u>

Beam Weights: Level 1 – Main Roof

<u>Appendix B – Building Weight Tables</u>

Beam #	Size	Cum. Length (ft)	Volume (cf)	Weight K
PHB1	16x30	14.00	46.62	6.99
PHB2	16x30	22.00	73.26	10.99
PHB3	16x30	6.00	19.98	3.00
PHB4	16x30	23.00	76.59	11.49
PHB5	16x30	38.00	126.54	18.98
PHB6	16x30	25.00	83.25	12.49
PHB7	16x30	46.00	153.18	22.98
PHB8	12x12	26.00	26.00	3.90
PHB9	12x12	18.00	18.00	2.70
PHB10	12x12	16.00	16.00	2.40
PHB11	12x24	52.00	104.00	15.60
PHB12	36x12	24.00	72.00	10.80
PHB13	16x30	14.00	46.62	6.99
PHB14	16x30	21.00	69.93	10.49
PHB15	16x30	6.00	19.98	3.00
PHB16	16x24	5.00	13.35	2.00
PHB17	16x24	26.00	69.42	10.41
PHB18	16x24	4.00	10.68	1.60
PHB19	16x16	27.00	48.06	7.21
SRB1	12x16	4.00	5.32	0.80
SRB2	12x16	15.00	19.95	2.99
SRB3	12x20	17.00	28.39	4.26
SRB4	12x16	18.00	23.94	3.59
MRB1	12x16	16.00	21.28	3.19
MRB2	12x16	20.00	26.60	3.99
MRB3	12x16	10.00	13.30	2.00
MRB4	12x16	22.00	29.26	4.39
W8x15	-	573.00	-	8.60
W8x21	-	144.00	-	3.02
	Total Weight	of Penthouse Roo	f/Mech. Roof	200.84

Beam Weights: Penthouse/Mechanical Roof

<u> Appendix B – Building Weight Tables</u>

Floor	Floor Height	Area (sf)	Perimeter	Slab Depth(ft)	Slab Volume (cf)	Wall Area (sf)	Slab Weight (K)	Wall Weight (K)
Penthouse Roof	18.500	2,354.000	198.000	0.500	1,177.00	1,831.50	176.55	54.95
Elev. Mech. Roof	8.500	289.000	77.000	0.500	144.50	327.25	21.68	9.82
Main Roof	10.583	17,147.000	805.830	0.583	10,002.42	6,422.80	1,500.36	192.68
11	9.583	20,134.000	920.083	0.583	11,744.83	8,817.16	1,761.73	264.51
10	9.583	20,238.000	935.500	0.583	11,805.50	8,964.90	1,770.83	268.95
6	9.583	27,052.000	1,103.583	0.583	15,780.33	9,770.27	2,367.05	293.11
8	9.583	27,052.000	1,103.583	0.583	15,780.33	10,575.64	2,367.05	317.27
7	9.583	28,776.000	1,140.500	0.583	16,786.00	10,752.52	2,517.90	322.58
6	9.583	28,776.000	1,140.500	0.583	16,786.00	10,929.41	2,517.90	327.88
5	9.583	28,776.000	1,140.500	0.583	16,786.00	10,929.41	2,517.90	327.88
4	9.583	28,776.000	1,140.500	0.583	16,786.00	10,929.41	2,517.90	327.88
3	9.583	28,193.000	1,156.917	0.583	16,445.92	11,008.07	2,466.89	330.24
2	11.000	28,992.000	1,179.917	0.583	16,912.00	12,032.91	2,536.80	360.99
1	11.000	30,708.000	1,175.830	0.750	23,031.00	12,934.13	3,454.65	388.02
B1	9.000	55,836.000	1,272.670	0.750	41,877.00	12,726.70	6,281.55	805.98
B2	9.000	53,587.000	1,079.750	0.750	40,190.25	9,717.75	6,028.54	939.41
B3	9.000	46,332.000	1,019.250	0.750	34,749.00	9,173.25	5,212.35	886.78
B3 Ext.	0.000	13,398.000	511.000	0.417	5,582.50	2,299.50	837.38	222.29
Total							46854.99	6641.23

Slab and Wall Weights

<u> Appendix B – Building Weight Tables</u>

Total Building Weight

Appendix C – Snow Loads

		1
	Nathantok Wind Loads 9-27-10	1. S.
	Location: Arlington, VA	
	Periorial Building	
	Kendennal Solaring.	
	lopography: Homogeneous	
	Besic Wind Speed: Exposure Building Classification	
	Alto VA=90mon B Category I	
	Mindley Bit	
	11.10	
	Velacity Fressure (gz)	
	9	
9	LE = 0.00ZSC KZ KZ KZ VI I= 1.00 from Table G-1	
e e	Vi-ac from Table 6-4	
es es	A - Orac Clark France B	
J J	V = 90mph from Figure 6-1	
	Height Allowe Ground level Z V *	
	KE	
	6-15 0.5/	
	25 6.66	
	30 0.70	
	40 0.76	
	50 0.81	
	60 0.85	
	70 0.89	
	80 0.93	
	90 0,96	
	120 0.49	
	140	
	160	
	1/80	
	200 1,20	
	3 3 60 (.28	
	350 1.35	
	400 1.47	
	uso iisz	
	500	
	Kz values per level were determined through interpolation and can be referenced	
	on the gz value chart	
	K = 1.00 hosed on Section CE7	
	121 - 1100 - 200 -	
	prefer to chart for a values	
		and the second

2 Gust Effect Factor (AMPAD C= 0.30 $I_{\overline{z}} = 0.3 \left(\frac{33}{767}\right)^{1/2} = 0.264$ $R = \int \frac{1}{B} R_{n} R_{n} R_{g} (0.53 \pm 0.47 R_{L}); R_{n} = \frac{747 N_{1}}{(1 \pm 10.3 N_{1})^{5/3}}; N_{1} = \frac{n_{1} L_{\overline{z}}}{V_{\overline{z}}}; \frac{n_{1} = 0.734}{L_{\overline{z}} = 1.253} \tilde{e}$ $B \pm assumed \ 1.5\% \text{ for } 0.015 \qquad R_{n} = \frac{7.47 (4.21)}{(1 \pm 10.3 (4.21))^{5/3}}; N_{1} = \frac{(0.734)(412.53)}{71.86} = \frac{320(\frac{70.7}{23})^{1/3}}{= (0.057)}; N_{1} = \frac{(1.734)(412.53)}{V_{\overline{z}}} = \frac{1.253}{V_{\overline{z}}} \sqrt{\frac{(58)}{(23)}} \sqrt{\frac{(58)}{(26)}}$ = 0.45 (70.7)1/4 (90) (58) $R_{h} = \frac{1}{\eta} - \frac{1}{z\eta^{2}(1 - e^{-2\eta})}; \eta = 4.6\eta_{1}(\frac{1}{\sqrt{2}})$ $= \frac{1}{5.64} - \frac{1}{2(5.64)}(1 - e^{2(5.64)}) = \frac{1}{5.54} - \frac{1}{2(5.64)}(1 - e^{2(5.64)})$ = 0,164

	-						3
	Note: In order the bi B and L rectang E-W a as the	s to obtain wilding will will be ular for e directions se floors a	values for taken for pase of c , The three ie the ma	or Band L ed into the r each se calculation e sections e st typical 1	in the rece section, c . This w will be s ayout fo	calculation of Re ons. The value assuming they are will be done for a pecified on floors or the building.	and RL es for e all both N-S and R-7 seeing
Campan .	2 Section Z 3	Variable B. L. Bz Lz Bz	N-S 65' 11e' 174.18' 66' 65'	E-W 118' 66' 174.18' 104'		SECTION 1 SECTION 2	Sections
•	$\frac{R_{B} \text{ Values}}{\text{Section.}}$ $\frac{N-S}{R_{B}=R_{h} \text{ fo}}$ $R_{B}=\frac{1}{2\pi S} - \frac{1}{2\pi S}$	$\frac{1}{4}$	1041 2/Vz 34)(55 /71.86 -2(305))	$\frac{E-W}{M=1}$	- 1.66.734X 0.164	(118/71.86) = 5.54	
	5.05 = 0.274 <u>Section 2</u> <u>N-5</u> η =4.6607 = 8.18 Rs= 0.115 Section 3 <u>N-5</u> η =4.6607 = 3.05 Rs=0.274	2(5.05) 34(X174.18)/7 34(X65/A/(86)	1.86	$\frac{E-W}{\Lambda = 4.6}$ $= 3.10$ $R_{B} = 0.27$ $\frac{E-W}{\Lambda = 4.6}$ $= 4.89$ $P_{D} = -0.28$	0,734)(c6/ 71 1,734)(¹⁰⁴ /	71.86) 71.86)	

Appendix D – Wind Loads

6 Design Wind Pressures (W) indeward i $p = q_2 GC_p - q_n(GC_{p_1})$; $q_n = 10.05$ Sample: Calc: p=(10:05ps(X0.886X0.8) - 18,24(=0.18) = 10.4) psf. Leeward: p=quGCp-qu(GCpi); qh=18,24 P = (1824)(0.886)(-0.15) + 18.24(-0.18)= -11.36 psf CAMPAD

Floor	Height Above Ground (ft)	K,	K _{zt}	K	v	I	q _z (psf)
B1	0.00	0.570	1.00	0.85	90.00	1.00	10.05
1.000	10.00	0.570	1.00	0.85	90.00	1.00	10.05
2.000	21.00	0.628	1.00	0.85	90.00	1.00	11.07
3.000	30.58	0.704	1.00	0.85	90.00	1.00	12.41
4.000	40.17	0.761	1.00	0.85	90.00	1.00	13.41
5.000	49.75	0.809	1.00	0.85	90.00	1.00	14.26
6.000	59.33	0.847	1.00	0.85	90.00	1.00	14.93
7.000	68.92	0.886	1.00	0.85	90.00	1.00	15.62
8.000	78.50	0.924	1.00	0.85	90.00	1.00	16.29
9.000	88.08	0.954	1.00	0.85	90.00	1.00	16.81
10.000	97.67	0.983	1.00	0.85	90.00	1.00	17.33
11.000	107.25	1.008	1.00	0.85	90.00	1.00	17.77
Penthouse	118.83	1.035	1.00	0.85	90.00	1.00	18.24

Velocity Pressure Values

			R Values			
Section	Direction	Rn	Rh	R _B	R	R
	N-S	0.057	0.164	0.274	0.052	0.308
1	E-W	0.057	0.164	0.164	0.093	0.242
	N-S	0.057	0.164	0.115	0.092	0.203
2	E-W	0.057	0.164	0.271	0.036	0.304
	N-S	0.057	0.164	0.274	0.059	0.309
3	E-W	0.057	0.164	0.184	0.093	0.256

R Values

		D	esign Wind Pres	ssure P (psf)			
Floor	Height Above Ground (ft)	K	q,(psf)	q _h (psf)	Windward (psf)	Leeward (psf)	Total Pressure (psf)
B1	0.000	0.570	10.05	18.24	10.41	-11.36	21.77
1.000	10.000	0.570	10.05	18.24	10.41	-11.36	21.77
2.000	21.000	0.628	11.07	18.24	11.13	-11.36	22.49
3.000	30.580	0.704	12.41	18.24	12.08	-11.36	23.44
4.000	40.170	0.761	13.41	18.24	12.79	-11.36	24.15
5.000	49.750	0.809	14.26	18.24	13.39	-11.36	24.75
6.000	59.330	0.847	14.93	18.24	13.87	-11.36	25.23
7.000	68.920	0.886	15.62	18.24	14.35	-11.36	25.72
8.000	78.500	0.924	16.29	18.24	14.83	-11.36	26.19
9.000	88.080	0.954	16.81	18.24	15.20	-11.36	26.56
10.000	97.670	0.983	17.33	18.24	15.57	-11.36	26.93
11.000	107.250	1.008	17.77	18.24	15.88	-11.36	27.24
Penthouse	118.830	1.035	18.24	18.24	16.21	-11.36	27.58

Design Wind Pressure

<u>Appendix E – Seismic</u>

Seisnic Load Spectral Response Acceleration Parameters Soil Site ClassiC So = 0.16 (ASCE-7 Figure ZZ-1) So = 0.051 (ASCE-7 Figure ZZ-Z) SMS = SS Fa; Fa = 1.2 (ASCE-7 Table 11:441) SNS= (0.16×1.2) = [0.192] (AMPAD Smi = Si Fv ; Fv = 1.7 (ASCE-7 Table 11.4-2) Smi= (0.051×1.7) = [0.087] Design Spectral Acceleration Parameters SDS = 3 SMS = 3 (0,192) = 0,128 SDI = 3 SMI = 3/2 (0.087) = 0.058 Seismic Base Shear $T = c_{Th_{n}} x ; C_{T} = 6.016 \qquad T = (6.016)(137.33)^{0.9} = 1.34 \text{ sec}$ $x = 0.9 \qquad T_{L} = 8 \text{ sec} (F_{g} \text{ vre } 22-15)$ $h_{n} = 137.33\% \qquad T_{L} > T$ $C_{s} = \frac{S_{0S}}{R_{f}}$; R = 3 $C_{s} = \frac{O_{128}}{(3f_{1})} = 0.0427$ V=CsWT; WT= 70497 K- (1476+ 7190+ 8210+8345) = 45276 K (BI-B3 Et. (subgrade) V=(0.0427)(45276)= 1933.K Vertical Distribution of Seismic Forces $F_{x} = C_{vx} V \quad ; \quad C_{vx} = \frac{\omega_{x} h_{x}^{k}}{\sum_{i=1}^{n} \omega_{i} h_{i}^{*}} ; \quad K = 1.67$ (Values for Sw.h. K, wxhx, Cux, and Fx are given in seismic loading chart

<u> Appendix E – Seismic Loads</u>

Floor	Weight (K)	Height (ft)	w _x h ^k	C _{vx}	F _x (K)	Story Shear (K)	Moment (ft-K)
Penthouse Roof	362.52	137.33	1347101.20	0.03	53.73	-	7379.32
Mech. Roof	135.67	131.64	469744.36	0.01	18.74	-	2466.61
Main Roof	2123	118.83	6195503.07	0.13	247.13	72.47	29366.59
11	2791.08	107.25	6863344.16	0.14	273.77	319.60	29361.88
10	2917.01	97.67	6135346.59	0.13	244.73	593.37	23902.93
9	3747.92	88.08	6633388.19	0.14	264.60	838.10	23305.77
8	3772.08	78.50	5508244.65	0.11	219.72	1102.70	17247.80
7	4049.75	68.92	4758442.36	0.10	189.81	1322.42	13081.60
6	4055.06	59.33	3709927.70	0.08	147.98	1512.23	8779.92
5	4055.06	49.75	2764660.05	0.06	110.28	1660.21	5486.38
4	4055.06	40.17	1934253.29	0.04	77.16	1770.49	3099.32
3	4019.16	30.58	1215670.53	0.03	48.49	1847.65	1482.87
2	4216.18	21.00	680809.12	0.01	27.16	1896.14	570.29
1	5201.69	10.00	243301.32	0.01	9.70	1923.30	97.05
		Σw _i h _i ^k =	48459736.59	Base Shear =	1933	Overturning Moment =	165628.33

Design Seismic Loads

<u>Appendix F – Spot Checks</u>

<u>Appendix F – Spot Checks</u>

S (120) (Floors 2-10) Spot Check : Type Level 5] Pu= 5(229.2)(698.25) + 168.98 + 5(4.65) = 992.42 K< 1863 K= & PurAx ... Okay $\frac{\text{Level 4}}{P_0} = \frac{6(229, 2)(698, 25)}{1000} + 168,98 + 6(4.65) = 1156.28 \text{ K} < 1363 \text{ K} = & P_{NMAX}, chay}{1000}$ Level 3 | $P_0 = 7(229.2)(298.25) + 168.98 + 7(4.65) = 1321.8K < 1363 K = Ø P_{0MAX}; okay$ (CAMPAD Level 2] Rebar = 12#11 As= 12(1.41)= 16.92 in2 \$PNMAX = 0.8(0.65)[0.85(5)(612-1692)+60(16.92)] = 1622 K Po= 8(229.2)(698.25) + 168.98 + 8(4.65) = 1486.49 K < 1622 = d PNMAX : okay Level 1]

Nathan Eck	Falls Church Tower
Technical Report 1	Falls Church, VA

Floor	Dead Load (psf	Live Load (psf	Total Load (psf	Required Strength (K) Design Strength (K
2	111.00	60.00	229.20	1486.49	1622.00
3	111.00	60.00	229.20	1321.80	1363.00
4	111.00	60.00	229.20	1156.28	1363.00
5	111.00	60.00	229.20	992.42	1363.00
6	111.00	60.00	229.20	827.74	1363.00
7	111.00	60.00	229.20	663.00	1363.00
8	111.00	60.00	229.20	498.36	1363.00
9	111.00	60.00	229.20	333.65	1363.00
10	136.50	49.25	242.00	168.98	1363.00

<u> Appendix F – Spot Checks</u>